MESSIAH UNIVERSITY

Messiah University Mosaic

Nursing (graduate) Student Scholarship

Nursing (DNP, MSN and RN-MSN)

8-2020

Improving Preventive Care for International Travelers Through Primary Care Screening

Rena Zody

Follow this and additional works at: https://mosaic.messiah.edu/grnurse_st

Part of the Medical Education Commons, and the Nursing Commons Permanent URL: https://mosaic.messiah.edu/grnurse_st/22

Sharpening Intellect | Deepening Christian Faith | Inspiring Action

Messiah University is a Christian university of the liberal and applied arts and sciences. Our mission is to educate men and women toward maturity of intellect, character and Christian faith in preparation for lives of service, leadership and reconciliation in church and society.

www.Messiah.edu

One University Ave. | Mechanicsburg PA 17055

SCHOOL OF GRADUATE STUDIES

> DOCTOR OF NURSING PRACTICE (DNP) PROGRAM Family Nurse Practitioner Track

A DNP PROJECT

Improving Preventive Care for International Travelers Through Primary Care Screening

STUDENT NAME: Rena Zody

DNP PROGRAM COORDINATOR: Kristen Slabaugh

DNP PROJECT TEAM MEMBERS: Kristen Slabaugh, Kimberly Fenstermacher, Nancy Woods, Louann Zinsmeister

DATE: August 2020

SCHOOL OF GRADUATE STUDIES

Improving Preventive Care for International Travelers Through Primary Care Screening

A Project Presented to the Faculty of the Department of Nursing Messiah University In partial fulfillment of the requirements

For the Degree of Doctor of Nursing Practice

Family Nurse Practitioner Track

By

Rena Zody, BSN, RN

Approved: <u>Kristen Slabaugh, DNP, CRNP, CNE</u> DNP Project Advisor

Approved: <u>*Kimberly Fenstermacher, PhD, CRNP*</u> DNP Project Committee Member

Approved: <u>Louann Zinsmeister, PhD, RN, CNE</u> DNP Project Committee Member

Approved: <u>Nancy Woods, PhD, MPH, RN</u> DNP Project Committee Member

Date: August 15, 2020

Improving Preventive Care for International Travelers Through Primary Care Screening

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Nursing Practice at Messiah University

By

Rena Zody July, 2020

Table of Contents

Abstract	4
Title of Project	5
Background	5
Problem Statement	6
Needs Assessment	7
Aims, Objectives, Purpose Statement	8
Review of Literature	8
Theoretical Model	10
Translation Model	10
Methodology	11
Participants	11
Setting	12
Tools	13
Intervention	13
Data Collection	14
Cost Analysis	15
Timeline	15
Ethics and Human Subject Protection	15
Results: Analysis and Evaluation	16
Discussion	17
Conclusion	18
References	20

IMPROVING PREVENTIVE CARE

Appendices
SWOT Analysis
Root Cause Analysis Tool
SMART Objectives
PRISMA Flow Diagram
Evidence Summary Matrix
Theoretical Model 40
Translation Model 41
Original Data Set Ethnicities 42
Screening Tool
Process Flow Chart 44
Provider/Office Manager Education 45
Patient Education 49
Budget
Stages/GANNT Chart 51
Data Analyses

Abstract

Background: Prior to recent restrictions on travel, international travel was popular with an increasing number of U.S. residents traveling to emerging markets, which may have unfamiliar health risks. In additional to risk of illness, travelers may carry nonendemic disease across country borders, increasing risks to public health. *Problem*: Though many international travelers report illness during travel or after returning home, only a portion receive a pretravel health consult for preventive care and education. Newer recommendations are to screen for upcoming international travel during routine health contacts; however, a travel medicine provider is best able to perform a comprehensive risk assessment and provide appropriate care. *Methods*: All adult patients were to be screened for upcoming international travel during each primary care visit at all University of Pittsburgh Medical Center (UPMC) Pinnacle primary care sites – referrals to the Travel Medicine Clinic (TMC) were then given as appropriate. *Intervention*: A tool to screen for upcoming international travel was embedded into the electronic medical record (EMR) at primary care visits with answers recorded by the rooming medical assistant. For patients with positive screenings, the provider received an immediate EMR prompt for a TMC referral. **Results**: Analysis of a total quota sample (n=200) found a significant increase in referrals to the TMC [$x^2(1) = 118.7$, p = .000] with a large effect size (d = .770) in the postintervention group. Additionally, asking about upcoming international travel does have a statistically significant effect on referrals to the TMC [pre group: 0%, n = 0; post group: 93.8%, n - 75, $x^2(2) = 29.18$, p = .000] with a strong positive association noted (r = .59). Conclusion: Screening for upcoming international travel at primary care visits does increase referrals to the TMC, potentially decreasing risks to travelers and public health.

Keywords: travel medicine, preventive care, pre-travel consult, travel health, travel-related illness

Improving Preventive Care for International Travelers through Primary Care Screening Background

Prior to recent restrictions on travel, the popularity of international travel was evident as approximately 41.77 million individuals traveled outside the U.S. in 2018 (National Travel and Tourism Office [NTTO], 2020). Additionally, the number of individuals who travel, specifically, from the U.S. to emerging markets and developing countries, which often have unique health risks, is increasing (Angelo, Kozarsky, Ryan, Chen, & Sotir, 2017a; Walker, et al., 2017). Included in this number is the large wave of immigrants to the U.S. – foreign-born persons who return to their countries of birth to visit friends and relatives (VFRs; Hamer et al., 2017; Tan et al., 2017) - who, unfortunately, suffer the highest rate of travel-related morbidity (Freedman, Chen, & Kozarsky, 2016). All international travelers may be exposed to health risks and unfamiliar diseases not endemic to their own country, for which they have no preventive care or education, potentially suffering morbidity and/or mortality as a result (Hagmann et al., 2014; Omodior, Pennington-Gray, Holland, Thapa, & Kiousis, 2017). Additionally, travelers can carry nonendemic diseases across borders, exposing others to secondary disease and increasing risks to public health (Laroque et al., 2010; Walker et al., 2017). Authors, Harvey et al. (2013), published a sentinel study in which they noted, "travelers have contributed to the global spread of infectious diseases, including novel and emerging pathogens" (p. 1). This risk has most recently been realized in coronavirus disease 2019 (COVID-19), first identified in Wuhan, China in 2019 (Centers for Disease Control and Prevention [CDC], 2020), which quickly spread globally through international travel and was declared a pandemic in March 2020 (World Health Organization [WHO], 2020).

Problem Statement

Although overall rates of international travel-related illness vary, a literature review noted that among travelers visiting developing countries, 43-79% developed a travel-related illness during travel or after returning home (Angelo et al., 2017b). Additionally, 53-56% of all international travelers with a travel-related illness never received a pre-travel health consult (Angelo et al., 2017b; Hagmann et al., 2014; Harvey et al., 2013). Unique to the subset of students (ages 17-24) who traveled for educational purposes to resource-limited countries, 70% had received a pre-travel health consult (Angelo et al., 2018). To increase preventive care and education, a recommendation by Angelo et al. (2017b) and Tan et al. (2017) includes proactive screening for international travel during routine patient contacts. However, due to complex epidemiology and the dynamic nature of travel medicine, unless a primary care provider - whose offices generally do not carry many of the preventive immunizations recommended for certain travel destinations (Freedman & Leder, 2018) - can complete a comprehensive risk assessment and fully understands the traveler-specific, itinerary-specific, and destination-specific risks, the patient should be referred to a travel medicine specialist (Chen et al., 2018; Fischer, 2017; Zappas, Whitely, & Carter, 2019).

Because there was no screening at University of Pittsburgh Medical Center (UPMC) Pinnacle primary care sites for international travel, this quality improvement (QI) project focused on improving preventive care prior to international travel through screening during the rooming process at each adult primary care visit. PICO(T) Question: For adult patients at UPMC Pinnacle primary care clinics (P), how does screening for upcoming international travel at each primary care encounter (I) compare to no screening for international travel at each primary care

encounter (C) influence the number of patients referred from primary care to the Travel Medicine Clinic (TMC) (O) over an 8-month period (T)?

Needs Assessment

According to the literature, both content and context issues were present. These included an overall lack of public knowledge regarding the need for pre-travel preventive care as well as a lack of coordination in patients receiving this recommended care. A SWOT analysis (Appendix A) reveals internal strengths and weaknesses as well as external opportunities and threats.

Strengths included the large size of the UPMC Pinnacle network with an associated TMC. UPMC Pinnacle TMC employs knowledgeable providers to manage travel-related illnesses as well as to provide comprehensive pre-travel preventive care (UPMC Pinnacle, 2019b). Trained referral team members direct referrals from providers to the TMC efficiently; however, a weakness is present as TMC intake staff only provide estimated costs to the referred individual based on travel destination and are not educated to advise on risks if a patient declines an appointment because of costs. Additionally, staffing vacancies throughout the organization strain resources system wide.

Opportunities for improvement existed due to the large local immigrant community/VFRs – in two main counties the largest group was from Asia with a total population of approximately 17,400 individuals - who often travel to their country of origin and have a uniquely high risk of morbidity related to their travel (Freedman et al., 2016; Migration Policy Initiative [MPI], 2017), as well as the large number of international travelers (Angelo et al., 2017b; Walker et al., 2017). Opportunities also surrounded media coverage of infectious disease outbreaks (i.e. Ebola) which improved public awareness and provided an increased opportunity for disease prevention (World Health Organization [WHO], 2018). Threats to improvement

IMPROVING PREVENTIVE CARE

existed as traditional insurance coverage does not pay for preventive immunizations or medication related to voluntary travel; thus, individuals may decline preventive care and medications due to out-of-pocket costs (Angelo et al., 2017a; Bunn, 2015). A root cause analysis replicated the issues identified through the SWOT analysis (see Appendix B).

One identified core value of UPMC Pinnacle – safety – aligns with this project through preventing primary illness in travelers and, further, preventing secondary illness to staff, other patients, and the community (UPMC Pinnacle, 2019c). This QI project, consistent with the six domains of health care quality, was to be (a) safe, (b) effective, (c) patient-centered, (d) timely, (e) efficient, and (f) equitable (Agency for Healthcare Research and Quality [AHRQ], 2018).

Aims, Objectives, Purpose Statement

The overarching aim for this project was to increase the number of patients, who have upcoming international travel, referred to the TMC. The SMART objectives included: (a) embedded screening questions regarding upcoming international travel added to the electronic medical record (EMR) rooming template, (b) screening 100% of adult patients for upcoming international travel at all primary care visits from May 2018 through January 2020, (c) offering a TMC referral to all patients who admitted to upcoming international travel, and (d) providing an automated TMC referral for the provider to sign for all amenable patients (see Appendix C). Thus, the overall purpose of this project was to increase the number of patients, planning to participate in international travel, who receive travel-related preventive care and education.

Review of Literature

A review of applicable literature included a search through Medline Complete and CINAHL with inclusion limits, based on the project specifics, of: (a) English language; (b) USA geographic subset; and (c) 2014-2019 publishing dates. Additional records were identified

through Google Scholar®, UpToDate®, and the Centers for Disease Control and Prevention (CDC) leading to a total combination of 731 records screened, 38 full-text articles assessed for eligibility, and 17 final articles included for relevance and quality (see Appendix D). Final articles, appraised using the Johns Hopkins Evidence-Based Practice Model (Dearhold & Dang, 2012), included research and non-research evidence (levels III through V) with quality ratings of A or B and the resulting data was combined in an evidence matrix summary (see Appendix E).

Common themes included: (a) the lack of pre-travel medical consults for international travelers, (b) the recommendation of screening for upcoming international travel during routine healthcare visits, (c) the need for a pre-travel consult for international travelers to prevent primary disease and secondary illness in the community, and (d) the need for a provider with specialized knowledge of travel medicine to provide comprehensive care. Except students traveling for academic purposes, non-experimental and descriptive research evidence reported only 44-47% of international travelers sought out a medical consult prior to their travel (Angelo et al, 2017b; Hagmann et al., 2014; Harvey et al., 2013). Research authors Angelo et al. (2017a) and Tan et al. (2017) recommended screening for upcoming international travel during routine health care visits to increase preventive care. Additionally, the need for a medical consult before international travel was well supported throughout the evidence from clinical practice guidelines (Freedman & Leder, 2018; Lee et al., 2017), expert opinion (Freedman et al., 2016), and research data (Chen et al., 2018; Harvey et al., 2013; Laroque et al., 2010). Finally, most pre-travel medical consults should be completed by a provider with specialized knowledge of travel medicine to provide comprehensive care based on traveler-specific, itinerary-specific, and destination-specific risks – which is supported by research evidence (Chen et al., 2018; Freedman et al., 2018) as well as published clinical practice guidelines (Fischer, 2017), expert

opinion (Sanford, McConnell, & Osborn, 2016) and community standards (Zappas et al., 2019). An evidence-based need for improvement in preventive care prior to international travel was demonstrated in this literature review. Excepting two sentinel studies by Harvey et al. (2013) and LaRoque et al. (2010), all literature evidence was published within five years of proposal. A notable gap was observed in the literature regarding benchmarks or interventions with which to compare this QI proposal.

Theoretical Model

Milio's Framework of Prevention was used to guide this QI project through its six identified propositions (Milio, 1976; see Appendix F). Milio's propositions, generally, examine how individuals or populations can be influenced to improve or change their health choices. Applying these propositions specifically to preventive care prior to international travel can help identify reasons for lack of preventive care and recognize ways to improve uptake of that care individually or through population health strategies.

Translation Model

The Ottawa Model of Research Use (OMRU) framework was utilized for quality improvement and has three fundamental elements which must be addressed as this assessment affects the project's uptake and implementation success (Logan & Graham, 1998; see Appendix G). The innovation element addressed the evidence to support this quality improvement plan the screening of patients for upcoming travel. The second fundamental element addressed potential adopters which included: (a) primary care medical assistants (Mas) and providers; (b) travel medicine referral team members; and (c) TMC office staff. The practice environment element addressed structure which included an information technology (IT) build, an increased referral burden, and patient economic considerations. Through the linear diagram of the OMRU,

interventions and adoption were assessed in a dynamic manner. Outcomes are addressed in the results portion of this paper while ongoing evaluation and changes may be considered for future initiatives.

Methodology

Participants

All adult patients were to be screened for international travel during the rooming process at each UPMC Pinnacle primary care visit. The rooming medical assistant (MA) was to ask the screening question which was built into the EMR. Inclusion criteria was all adult patients (\geq 18 years of age) presenting for a primary care appointment with a provider, while exclusion criteria eliminated patients less than 18 years of age and patients roomed during EMR "downtime" – any time that the EMR was not functional or available to staff.

Participants under the age of 18 (n=28,063) were deleted from the entire retrieved data set (N=457,865) because they did not meet inclusion criteria. Of the remaining participants (N = 429,802), missing demographic data was <1% for both gender and ethnicity with no missing data for age or appointment type. This sample ranged in age from 18 to 105 years (mean = 56.8 years, SD = 17.2), was primarily female (57.3%, n = 246,420), white (87.9%, n = 372,594) and were seen for a non-acute appointment (98.7%, n = 424,269) In comparing the demographics between the pre-intervention group (n = 266.763) to the post-intervention group (n = 163,014), statistically significant differences were found for both gender [$x^2(1)$, = 97.85, *p* = .000] and age [pre-intervention, M = 57.5 (SD = 17.13) and post-intervention, M = 55.8 (SD = 17.39)], t(340519) = 31.2, *p* = .000. Additional analysis of the complete data set revealed large amounts of non-random missing data for the variables of interest (travel plans [yes/no] missing = 54.8% [n=89,311] and referral offered [yes/no] missing = 98.9% [n=161,176]) from the post-

intervention group [n = 163,014] due to lack of documentation of answers to the screening questions. It was decided that the sample would be restricted to participants with complete data and that a data set would be built to control for the two confounders (gender and age) while maintaining all valid data of participants that did have complete information and a positive referral to the TMC.

The quota sample was created by separating groups (pre- or post-), controlling for the demographic variables of age and gender, and choosing individuals to construct equivalent groups. The final data set consisted of two demographically equivalent groups (N = 200). This process did maintain the integrity of the higher number of travel referral orders in the post-intervention group (n=90) versus the pre-intervention group (n=13). Subjects in the pre-intervention group were seen in the primary care offices between August 2018 and mid-May 2019 while subjects in the post-intervention group were seen in the primary care offices between a primary care offices between late May 2019 and January 2020. It should be noted that the ethnicity of the total sample was so predominantly White (87.9%) that it was not possible to create equal representation among ethnicities in the quota sample (Appendix H). However, increased representation of minority ethnicities was attempted in the quota sample build with 70% White and 30% Black/Other.

Setting

The UPMC Pinnacle network supports over 50 primary care offices which care for a diverse urban, suburban, and rural population spread across ten central Pennsylvania counties (UPMC, 2019a). The TMC is a specialty clinic (as part of Infectious Disease) within the UPMC Pinnacle network. Positive attributes of this project included: (a) low complexity with "yes/no" responses to screening questions, (b) compatibility with simple inclusion as part of current practice as questions were embedded into the EMR for MAs to read and record responses to

during rooming, (c) feasibility with EMR prompts consistent across all offices within the electronic medical system, (d) clear, evidence-based recommendations as previously noted, and (e) UPMC Pinnacle leadership support. Barriers included: (a) staffing workload and associated lack of compliance, (b) minimal opportunities to educate staff due to competing health system priorities, (c) lack of opportunity to trial implementation, and (d) massive implementation with limited opportunity for ongoing evaluation. To overcome barriers, the project manager attempted frequent communication during initial implementation with the Outpatient Chief Quality Officer (OPCQO), Primary Care office managers, and the TMC manager to discuss concerns or roadblocks during implementation, as well as ongoing electronic education to Primary Care office managers during initial implementation. However, data analysis exposed under compliance of rooming staff and associated documentation.

Tools

The screening tool, developed by the project manager and the OPCQU, was based on evidence-based recommendations for improvement because no screening tool was previously embedded in the EMR, nor was a tool found in the literature review (see Appendix I).

Intervention

Screening was to be obligatory as it was built into the electronic requirements of the rooming process at each adult primary care appointment. During each primary care visit the patients were roomed by the MA, who was to ask the pre-populated EMR screening question - "Do you have upcoming travel planned outside of the United States?" - and record the answer(s) in the EMR. If the screening was positive, an additional statement and question automatically populated in the EMR – "International travel has unique health risks; however, there is preventive care available to help decrease your risk of getting sick. Can we refer you to our

Travel Medicine Clinic for care?" If the patient agreed, a referral to the TMC was automatically triggered for the provider, who signed any appropriate referrals to the TMC (see Process Flow Chart in Appendix J).

For this project, the project manager provided verbal education with an accompanying PowerPoint presentation to the office managers and physician team leaders during a regularly scheduled Team Lead Meeting. The office managers were to educate the MAs in their office on the screening implementation. The providers, who received the electronic prompt to sign any appropriate TMC consults, were sent evidence-based research (written by the project manager) for the change with an authoritative directive through email from the OPCQO (see Appendix K). Additionally, the project manager provided educational materials for the patients on travel risks and prevention (see Appendix L).

Data Collection

Quantitative, de-identified, retrospective data of all patients seen at UPMC Pinnacle primary care sites was requested through the IT department for EMR extraction with demographic variables including (a) gender, (b) age, (c) ethnicity, and (d) type of appointment (acute versus non-acute). Data was requested and received for all UPMC Pinnacle primary care appointments from August 2018 through January 2020. Additional data requested and received included all referrals to the TMC and screening question assents (from this QI project intervention) in the EMR. The number of referrals to the UPMC Pinnacle TMC over the 8 months prior to screening implementation were compared to data collected for eight months post-implementation. Additionally, data was statistically analyzed and potential differences with referrals/non-referrals were sought in associated demographic information (gender, age, ethnicity, and reason for appointment – acute versus non-acute).

Cost Analysis

There were no direct costs to the organization other than utilization of existing resources. Minimal costs were donated by the Project Manager (see Appendix M).

Timeline

In April 2018, the project manager received proposal approval and completed Institutional Review Board (IRB) submission for both UPMC Pinnacle and Messiah College; both IRB approvals were granted within 2 weeks of submission. An aggressive timeline to initiate the intervention was proposed due to UPMC Pinnacle's enthusiasm for this QI project. Thus, additionally in April 2019, the implementation team was educated, IT completed the intervention build, and the screening tool was embedded into the system EMR. In May 2019, education for patients was distributed to primary care offices, the UPMC Pinnacle Nursing Research Council was updated (per system policy), and the screening tool was enabled in the EMR to begin screening. Retrospective pre-implementation data were obtained through EMR extraction in November 2019 and post-implementation data were extracted in April 2020. These data were analyzed in June/July 2020 with final QI project outcomes written in July 2020 (see Appendix N).

Ethics and Human Subject Protection

The Messiah College and UPMC Pinnacle IRB approvals were obtained prior to initiating the DNP project. All participants were protected by the Health Insurance Portability and Accountability Act of 1996 (HIPAA) which, among other guarantees, protects the privacy of patients' health information (Robert Wood Johnson Foundation [RWJF], 2013). Additionally, the project manager and practice personnel conducting this project carefully followed regular standards of care for practice in a primary care office. Information collected as part of

evaluating the impact of this project was aggregated data from the project participants and did not include any potential patient identifiers. The risk to patients participating in this project was no different from the risks of patients receiving standard primary care. Participant confidentiality was assured by extracting de-identified aggregate data from the EMR system. This data was kept on a password protected/locked USB (only accessible by the project manager) and in a locked office in the project manager's home.

Results

Analysis and Evaluation

The quota sample in its entirety consisted of 200 adult patients seen at primary care visits (100 in pre-intervention group, 100 in post-intervention group) with a mean age of 45.94 years (SD = 13.7). Most of the subjects were female (51%, n = 102), white (70%, n = 140) and at a non-acute primary care appointment (99.5%, n = 199; see Appendix O1). Assumptions for the Chi-square test and the Independent Samples *t*-test were met.

Between the pre-intervention group and the post-intervention group, there were no statistically significant differences for gender $[x^2(1) = .000, p = 1]$; ethnicity $[x^2(1) = .000, p = 1]$; appointment type $[x^2(1) = 1.005, p = .316]$; or age [t(176) = 0.510, p = .611]. An analysis of the only dependent variable, a travel medicine referral, examined any differences related to the primary question of this project – in adult patients seen in primary care offices, does the implementation of a screening question for upcoming international travel plans increase referrals to the Travel Medicine Clinic - compared to no screening question for upcoming international travel plans? There was a statistically significant greater number of referrals to the TMC in the post-intervention group (n = 90) compared to the pre-intervention group (n = 13) $[x^2(1) = 118.7, p = .000]$ with a large effect size (d = .770; See Appendix O2). Additional analysis examined the

relationship between the primary intervention question (Do you have plans for upcoming international travel?) and referrals to the Travel Medicine Clinic. The Chi-Square test of association results indicated that asking about upcoming international travel plans does have a statistically significant effect on referrals to the TMC (pre group: 0%, n = 0; post group: 93.8%, n =75, $x^2(2) = 29.18$, p = .000; see Appendix O3) with a strong positive association (r = .59; See Appendix O4).

Discussion

Although the previously identified SMART goals were not fully achieved, the statistically significant difference of TMC referrals in the post-intervention group, specifically associated with the new screening question, demonstrated the value of screening for upcoming international travel at routine medical appointments. This QI project, implemented consistently, could continue to increase referrals to the TMC. A subsequent result may be an increase in preventive care and a decrease in travel-related illness in the primary care population with international travel plans, which was the main purpose of this project. Additionally, public health may be protected through the prevention of secondary, travel-related illness.

Strengths of this project included the large size of the UPMC Pinnacle network which includes a TMC employing providers educated, and specializing, in travel medicine. Limitations included (a) the focus on travelers from one geographic area which limits generalizability of this study's data to other geographic locations, (b) a primarily White population of patients which limits generalizability to more diversely ethnic populations, and (c) low screening rate/gaps in data due to staff non-compliance in utilizing the screening intervention questions.

Recommendations for future research include initiating the intervention on a smaller scale initially to ensure education with frequent audits of staff compliance to decrease gaps in

data. A separate project could examine the participation of patients who receive a TMC consult and their attendance at preventive appointments including compliance with recommended immunizations, protective medications, and self-care practices. Additionally, opportunities exist to increase preventive, travel-related, care to foreign-born persons who return to their country of birth to visit friends and relatives (VFRs) – this population suffers the highest rate of travelrelated morbidity but was not well-represented in this project. Nevertheless, the findings of this QI project highlight the importance of screening patients for upcoming international travel to improve referrals, for preventive care and protection of public health, to a TMC.

Conclusion

The core competency of *independent practice* for the nurse practitioner includes: (a) health promotion; (b) disease prevention; and (c) health protection making this project applicable for the nurse practitioner (Thomas et al., 2017). Thus, through screening for international travel during routine primary care visits (which is not current practice), this QI project could improve preventive care to the primary care population with international travel plans and protect public health through prevention of secondary, travel-related illness.

International travel, which often has preventable health risks, had maintained popularity until the COVID -19 global pandemic occurred. However, prior to the initiation of this project there was a lack of research and QI strategies related to pre-travel medical consults, which assess travelers' risks, and adequate preventive care and education. This QI project screened for prospective international travel and initiated appropriate referrals to the TMC for preventive care. It is anticipated that this improvement in preventive care should minimize travelers' health risks as well as protecting public health through a decrease in secondary illness. The current global pandemic has, currently, severely limited international travel through individual choice,

business modifications, and government restrictions. It is unknown when or how frequently international travel will resume; however, the speed with which COVID-19 was spread through individuals traveling around the world should provide a cautionary tale for the medical community and the public. There remains a need for improved awareness of international health risks as ongoing global travel with already known disease risks resumes, and the evolution of human-animal interface will likely potentiate additional novel infectious diseases (Perl & Price, 2020). Thus, screening for upcoming international travel and encouraging pre-travel medical consults should be prioritized to minimize primary disease and prevent secondary illness.

References

- Agency for Healthcare Research and Quality. (2018). *Six domains of health care quality*. Retrieved from https://www.ahrq.gov/talkingquality/measures/six-domains.html
- Angelo, K. M., Haulman, N. J., Terry, A. C., Leung, D. T., Chen, L. H., Barnett, E. D., ... Hamer, D. H. (2018). Illness among US resident student travellers after return to the USA: A GeoSentinel analysis, 2007-17. *Journal of Travel Medicine*, 25(1), 1-7. https://doi.org/10.1093/jtm/tay074
- Angelo, K. M., Kozarsky, P. E., Ryan, E. T., Chen, L. H., & Sotir, M. J. (2017a). What proportion of international travellers acquire a travel-related illness? A review of the literature. *Journal of Travel Medicine*, 24(5), 1-8. https://doi.org/10.1093/jtm/tax046
- Angelo, K. M., Libman, M., Caumes, E., Hamer, D. H., Kain, K. C., Leder, K., ... Esposito, D.
 H. (2017b). Malaria after international travel: A GeoSentinel analysis, 2003-2016. *Malaria Journal*, 16(293). https://doi.org/10.1186/s12936-017-1936-3
- Bunn, W. B. (2015). Correspondence [Letter to the editor]. *Journal of Travel Medicine*, 22(1), 70-71. Retrieved from https://academic.oup.jtm
- Centers for Disease Control and Prevention. (2020). *About COVID-19*. Retrieved from https://www.cdc.gov/coronavirus/2019-ncov/cdcresponse/about-COVID-19.html
- Chen, L. H., Leder, K., Barbre, K. A., Schlagenhauf, P., Libman, M., Keystone, J., ... Wilson, M.
 E. (2018). Business travel-associated illness: A GeoSentinel analysis. *Journal of Travel Medicine*, 25(1). https://doi.org/10.1093/jtm/tax097
- Dearholt, S. L., & Dang, D. (2012). *Johns Hopkins nursing evidence-based practice: Model and guidelines* (2nd ed.). Indianapolis, IN: Sigma Theta Tau International.

- Fischer, P. R. (2017, June 20). Bug bytes from Barcelona: Report of the 15th conference of the International Society of Travel Medicine [Press release]. Retrieved from Relias Media Website: https://www.ahcmedia.com/articles/
- Freedman, D. O., Chen, L. H., & Kozarsky, P. E. (2016). Medical considerations before international travel. *The New England Journal of Medicine*, 375(3), 247-260. https://doi.org/10.1056/NEJMra1508815
- Freedman, D. O., & Leder, K. (2018). *Immunizations for travel*. Retrieved from https://www.uptodate.com
- Hagmann, S. H., Han, P. V., Stauffer, W. M., Miller, A. O., Connor, B. A., Hale, D. C., ...
 Kozarsky, P. E. (2014). Travel-associated disease among US residents visiting US
 GeoSentinel clinics after return from international travel. *Family Practice*, *31*(6), 678-687. https://doi.org/10.1093/fampra/cmu063
- Hamer, D. H., MacLeod, W. B., Chen, L. H., Hochberg, N. S., Kogelman, L., Karchmer, A. W.,
 ... Barnett, E. D. (2017). Pretravel health preparation of international travelers: Results from the Boston area travel medicine network. *Mayo Clinic Proceedings: Innovations, Quality, and Outcomes*, 1(1), 78-90. https://doi.org/10.1016/j.mayocpiqo.2017.04.001
- Harvey, K., Esposito, D. H., Han, P., Kozarsky, P., Freedman, D. O., Plier, D. A., & Sotir, M. J. (2013). Surveillance for travel-related disease GeoSentinel Surveillance System, United States, 1997-2011. *CDC: Morbidity and Mortality Weekly Report*, *62*(3), 1-15. Retrieved from https://www.cdc.gov/mmwr/preview/mmwrhtml/ss6203a1.htm
- Laroque, R. C., Rao, S. R., Tsibris, A., Lawton, T., Barry, A., Marano, N., ... Ryan, E. T. (2010). Pre-travel health advice-seeking behavior among US international travelers departing

from Boston Logan International Airport. *Journal of Travel Medicine*, *17*(6), 387-391. https://doi.org/10.1111/j.1708-8305.2010.00457.x

- Lee, T. K., Hutter, J. N., Masel, J., Joya, C., & Whitman, T. J. (2017). Guidelines for the prevention of travel-associated illness in older adults. *Tropical Diseases, Travel Medicine, and Vaccines*, 3(10). https://doi.org/10.1186/s40794-017-0054-0
- Logan, J., & Graham, I. D. (1998). Toward a comprehensive interdisciplinary model of health care research use. *Science Communication*, 20, 227-246. https://doi.org/10.1177/1075547098020002004
- Migration Policy Initiative. (2017). U.S. immigrant population by state and county. Retrieved February 17, 2019, from https://www.migrationpolicy.org/programs/data-hub/charts/usimmigrant-population-state-and-county
- Milio, N. (1976). A framework for prevention: Changing health-damaging to health-generating life patterns. *American Journal of Public Health*, 66(5), 435-439.
 https://doi.org/10.2105/ajph.66.5.435
- National Travel and Tourism Office. (2020). *Monthly U.S. outbound air travel to international regions*. Retrieved from https://travel.trade.gov/view/m-2018-O-001/index.html
- Omodior, O., Pennington-Gray, L., Holland, S., Thapa, B., & Kiousis, S. (2017). Chikungunya disease awareness among U.S. travelers to Caribbean destinations. *International Journal* of Travel Medicine and Global Health, 5(1), 20-27. https://doi.org/10.15171/ijtmgh.2017.04
- Perl, T. M., & Price, C. S. (2020). Managing emerging infectious diseases: Should travel be the fifth vital sign? *Annals of Internal Medicine*, 172(8), 560-561. https://doi.org/10.7326/M20-0643

Robert Wood Johnson Foundation. (2013). *Modifications to the HIPAA Privacy, Security, Enforcement, and Breach Notification Rules*. Retrieved from http://www.statecoverage.org/node/4589.html

Sanford, C., McConnell, A., & Osborn, J. (2016). The pretravel consultation. *American Family Physician*, 94(8), 620-627. Retrieved from https://www.aafp.org

 Tan, E. M., Njeru, J. W., Jacobson, D. J., Wilson, P. M., Fan, C., Marcelin, J. R., ... Sia, I. G.
 (2017). Pre-travel health care utilization among travelers who visit friends and relatives. *International Journal of Travel Medicine and Global Health*, 5(2), 53-59. https://doi.org/10.1517/ijtmgh.2017.11

- Thomas, A., Crabtree, M. K., Delaney, K., Dumas, M. A., Kleinpell, R., Marfell, J., ... Wolf, A. (2017). Nurse Practitioner Core Competencies Content. Retrieved from https://cdn.ymaws.com/www.nonpf.org/resource/resmgr/competencies/2017_NPCoreCo mps with Curric.pdf
- UPMC Pinnacle. (2019a). *Infectious disease and travel clinic*. Retrieved from https://www.pinnaclehealth.org/our-services/infectious-disease
- UPMC Pinnacle. (2019b). *Our mission, vision, and values*. Retrieved from https://www.pinnaclehealth.org/our-health-system/about-upmc-pinnacle/our-missionvision-and-values
- UPMC Pinnacle. (2019c). *Primary care*. Retrieved from https://www.pinnaclehealth.org/ourservices/primary-care/
- Walker, A. T., LaRocque, R. C., & Sotir, M. J. (2017). *Travel epidemiology*. Retrieved from https://wwwnc.cdc.gov/travel/yellowbook/2018/introduction/travel-epidemiology

World Health Organization. (2018). *Ebola virus disease*. Retrieved from https://www.who.int/csr/don/28-december-2018-ebola-drc/en/

- World Health Organization. (2020). WHO characterizes COVID-19 as a pandemic. Retrieved from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen
- Zappas, M. P., Whitely, C., & Carter, S. (2019). Global travel: What to know before they go. *The Journal for Nurse Practitioners*, 15(8), 544-549. Retrieved from

https://www.npjournal.org/

Appendix A

Table 1. SWOT Analysis

Strengths (internal)	Weaknesses (internal)
Healthcare organization has an Infectious Disease Clinic	Referral team does not have the knowledge to educate patients on risks if they decline referral
Healthcare organization has a Travel Medicine Clinic	No ability to add additional resources at this time to educate referral team
Large healthcare organization with wide reach	Many staffing holes throughout organization
Many primary care offices to screen patients for upcoming travel	PCPs do not have adequate knowledge to advise travelers
Referral team to efficiently direct referrals to Travel Medicine Clinic	PCP offices do not carry all necessary immunizations for pre-travel preventive care
	Lack of time by PCP during visit to assess upcoming travel
Opportunities (internal)	Threats (external)
Increased travel noted internationally	Lack of insurance coverage for preventive care related to travel
family and relatives (VFRs) in the local geographic region	Travel medicine preventive care and visit requires private payment
Media often highlights infectious diseases cases which increases awareness (i.e. current coronavirus and Ebola)	

Appendix B

Root Cause Analysis Tool

Appendix C

SMART objectives:

- EMR screening questions regarding upcoming international travel, asked by the medical assistant, will be built into the rooming process template in the EPIC system and asked at each adult primary care visit. This build will be completed by May 10, 2019.
- 100% of adult patients presenting for a primary care visit will be screened for upcoming international travel over an eight-month screening period using the EPIC system triggers during the rooming process from May 2019 through January 2020.
- 3. 100% of adult patients who admit to upcoming international travel will be offered a referral to the TMC by the medical assistant who is completing the rooming process.
- 4. 100% of patients who agree to the referral will have an automated referral directed to the provider for the provider's signature.
- 5. By screening every adult primary care patient at each visit for international travel, an increased proportion of patients will be referred from primary care to the TMC for preventive care and education over an 8-month period when compared to the proportion of referrals from primary care to the TMC in the eight months prior to implementation of screening.

Appendix D

PRISMA Flow Diagram

Appendix E

Article #	Author, Publication Source, & Date of Publication	Evidence Type and Purpose	Sample Type, Size, Setting	Study Findings	Limitations	Evidence Level	Quality Rating
1	Freedman The New England Journal of Medicine July 2016	Non-research: Expert Opinion – to provide specialist advice for providers performing international pre-travel patient health consultations	n/a	Provided a structured and sequenced approach using standardized protocols to provide a pre-travel preventive health consultation for healthy adults traveling to common destinations. Advice from a specialist is recommended for all other travelers	Authors are specialists in Infectious Disease; Due to constantly changing global health threats, providers must frequently consult updated travel medicine information to provide current and accurate prevention advice; thus, article advice may not be current.	V	A
2	Hamer Mayo Clinic Proceedings: Innovations, quality, and outcomes July 2017	Research – Non- experimental; comparative of traveler demographics and trip characteristics with travel plans as well as	Consecutive sample of 15,440 patients from 5 travel clinics in the Boston Area Travel Medicine Network (BATMN)	Compared traveler demographics and trip characteristics with travel plans as well as pretravel preparations; Demographic information – age, sex, race/ethnicity, country of origin, year of arrival in the	Focus on travelers from only one geographic area of the US (threat to external validity of selection bias and setting); missing responses for certain variables; lack of data on reasons vaccines	III	В

Evidence Summary Matrix

IMPROVING PREVENTIVE CARE

Article #	Author, Publication Source, & Date of Publication	Evidence Type and Purpose	Sample Type, Size, Setting	Study Findings	Limitations	Evidence Level	Quality Rating
		pretravel preparations	who were medically evaluated for travel outside the United States from March 2008 – July 2010	U.S., parents' countries of origin, primary language; Noted importance of assessing unique traveler and trip characteristics to improve understanding of clinic-specific population health risks based on clinic geography as well as individual travel risks; Increased risks noted for VFRs (visiting friends and relatives)	were not administered (threat to instrument content validity); differences in provider practice (threat to intervention fidelity)		
3	Omodior International Journal of Travel Medicine and Global Health February 2017	Research – Non- experimental; descriptive – to investigate chikungunya disease awareness, personal	Convenience sample of 653 US adult travelers who visited any one of 34 Caribbean destinations	Only 35% of travelers reported seeking out information about health risks at a destination prior to visiting to Caribbean; Although chikungunya disease is a significant risk to	Study findings limited to those using an online platform (threat to external validity of selection bias); No survey question differentiation noted between	III	В

Article #	Author, Publication Source, & Date of Publication	Evidence Type and Purpose	Sample Type, Size, Setting	Study Findings	Limitations	Evidence Level	Quality Rating
4	Angelo	protective behaviors, and health-seeking behaviors of US travelers to destinations in the Caribbean Research –	through an online survey	travelers in the Caribbean, there is a low level of disease awareness among travelers (30%) with associated inadequate prevention practices 53% of travelers did	unique Caribbean destinations (threats to instrumentation content validity and external validity of setting) May not be	III	A
	Malaria Journal July 2017	Non- experimental; descriptive – to describe demographic information, travel details, clinic visit characteristics, and disease attributes of travelers diagnosed with malaria after travel to malaria- endemic areas	5689 travelers diagnosed with malaria at GeoSentinal Global Surveillance Network sites from March 2003 - July 2016	not have a pre-travel medical visit; 53% were VFRs (visiting friends and relatives); recommended proactive action – increasing malaria awareness, promoting pre-travel medical visits, inquiring about upcoming travel during routine healthcare contacts to increase prevention measures	representative of an travelers with malaria due to specialized sites record review (threats to external validity of selection bias and setting); no information on malaria prophylaxis taken or compliance with medication (threat to external validity of history and treatment)		
5	Freedman UpToDate November 2018	Non-research: Clinical Practice Guidelines (for travel immunizations)	n/a	Immunization recommendations for international travel; travelers should receive preventive care prior to	Guidelines presented through evidence-based research from the International Society of Travel	IV	A

Article #	Author, Publication Source, & Date of Publication	Evidence Type and Purpose	Sample Type, Size, Setting	Study Findings	Limitations	Evidence Level	Quality Rating
				international travel; a pre-travel consult should be completed by a specialized travel clinic or a primary care practice with expertise in travel medicine	Medicine, the Centers for Disease Control and Prevention; and the World Health Organization		
6	Walker CDC June 2017	Non-research: Expert Opinion (on travel epidemiology)	n/a	International tourist numbers are expected to increase which leads to an increased risk for disease for the traveler and for secondary infections; only 40% of returning ill travelers reported pretravel medical visits	Information presented from experts in infectious disease and/or travel medicine. Information sources identified: Centers for Disease Control and Prevention; GeoSentinel Surveillance System; and United Nations World Tourism Organization	V	A
7	Fischer Infectious Disease	Non-research: Consensus statements from	n/a/	Most primary care providers are unable to give accurate and	Conference of international travel medicine	IV	В
	June 20, 2017	Society of Travel		regarding pre-travel preventive vaccines	be biased toward travel medicine		

Article #	Author, Publication Source, & Date of Publication	Evidence Type and Purpose	Sample Type, Size, Setting	Study Findings	Limitations	Evidence Level	Quality Rating
		Medicine conference proceeding		and prevention/manageme nt of travelers' diarrhea; Professions providing pre-travel care must be knowledgeable about all aspects of travel health, able to effectively educate travelers, and have adequate time for	specialists providing pre- travel care		
8	Angelo Journal of Travel Medicine 2017	Non-research: Literature review (of studies that included international travelers who acquired a travel-related illness	n/a	Comprehensive care Much data related to illness from travel is dated and with limited generalizability; 4 studies were found to provide valid estimates on travel- related illness – between 43-79% of travelers reported a travel-related illness	All data from the 4 studies was drawn from patients which had a pre- travel health consultation – thus, may not be generalizable to all travelers as most who received a consult were traveling to higher- risk destinations (Africa & Asia)	V	A
9	Harvey	Research – Non- experimental – Descriptive – to	Consecutive sample of 141,789 patients who	The number of patients evaluated increased each consecutive year; the	All data were from GeoSentinel sites – thus, may not be generalizable to	III	A

Article #	Author, Publication Source, & Date of Publication	Evidence Type and Purpose	Sample Type, Size, Setting	Study Findings	Limitations	Evidence Level	Quality Rating
#	& Date of Publication CDC – Morbidity and Mortality Weekly Report July 19, 2013 (sentinel study)	Purpose summarize data from patients with confirmed or probable travel-related illnesses	Setting were evaluated at one of 22 GeoSentinel Global Surveillance Network medical sites and were diagnosed with a travel- related illness from September 1997 through December 2011; limited to patients who had traveled across an international border within the previous ten years and had sought care for a presumed	most common reason for travel sited was tourism; fewer than half of all patients (44%) reported a pre- travel medical consult; the most common diagnosis included was unspecified diarrhea; future efforts should increase the number of international travelers who seek a medical consult pre- travel	entire traveling population (threats to external validity of selection and setting); cannot be used to estimate disease rates or risks because of lack of denominator data; Data coding practices and the GeoSentinel data system have changed over time and may have varied by site (threat to instrument construct validity and test-retest reliability)	Level	Rating
			travel-related illness				

Article #	Author, Publication Source, & Date of Publication	Evidence Type and Purpose	Sample Type, Size, Setting	Study Findings	Limitations	Evidence Level	Quality Rating
10	Hagmann Family Practice 2014	Research – non- experimental – descriptive demographics included reason for travel, geographic area of disease acquisition, and disease spectrum	Consecutive sample of 9624 US travelers who were evaluated at one US medical clinic in the GeoSentinel Surveillance Network and were diagnosed with a travel- associated illness from January 1, 2000 through December 31, 2012	Pre-travel advice was sought by 45% of returned ill travelers; information on purpose of travel and destination represents important information to help inform strategies in improving preventive pre-travel care; highest percentage captured (38%) had traveled for tourism; median travel duration was 20 days; GI illness were most common (58%)	GeoSentinal data only captures information from patients seen at the specialty travel clinics – not primary, acute, or emergency care settings (threats to external validity of selection and setting)	III	В
11	Chen Journal of Travel Medicine 2018	Research – non- experimental; descriptive of ill business travelers post international travel	Consecutive sample of 12,203 international business travelers who were evaluated at one of the GeoSentinel	Malaria was the most frequent diagnosis as well as the most common cause of mortality; less than half (46%) of the travelers reported a pre-travel medical consultation; pre- travel medical advice	GeoSentinal data only captures information from patients seen at the specialty travel clinics – not primary, acute, or emergency care settings (threats to external validity of	III	A

Article #	Author, Publication Source, & Date of Publication	Evidence Type and Purpose	Sample Type, Size, Setting	Study Findings	Limitations	Evidence Level	Quality Rating
			Surveillance Network clinics (64 clinics in 29 countries) and were diagnosed with a travel- associated illness from January 1, 1997 through December 31, 2014	is recommended but, currently, underutilized for international business travelers – needs to be improved	selection and selection)		
12	Lee Tropical Diseases, Travel Medicine and Vaccines 2017	Non-research: Clinical Practice Guidelines for prevention of travel- associated illness in older adults	n/a	Elderly patients should have a medical consult prior to international travel for risk assessment and guidance	Authors used the GRADE system to evaluate strength and quality of recommendations; gaps in research related to subgroup of travelers (elderly) with special needs	IV	В
13	Tan International Journal of Travel Medicine and Global Health 2017	Research: Non- experimental; comparative of pre-travel health care utilization	Consecutive sample of 2073 patients (393 VFRs and 1680 non-VFRs) evaluated at	Compared to non- VFRs, VFRs often have last-minute, long-term travel practices and lower rates of vaccine completion; authors	Conducted at a single clinic so limited generalizability (threats to external validity of selection and setting); those	III	В

Article #	Author, Publication Source, & Date of Publication	Evidence Type and Purpose	Sample Type, Size, Setting	Study Findings	Limitations	Evidence Level	Quality Rating
			Mayo Clinic Travel and Tropical Medicine Clinic from January 1, 2012 through December 31, 2013; compared pre-travel utilization of healthcare between VFRs and non-VFRs	recommend that during routine health care visits, primary care providers remind VFR population to seek pre-travel care if needed	seen at clinic may be more motivated and literate related to pre-travel care (threats to external validity of selection and setting)		
14	Sanford American Family Physician 2016	Non-research: Expert Opinion (on a pretravel medical consult)	n/a	Physicians without travel medicine training or who do not regularly perform pre- travel consults should refer any complex patients to travel medicine specialists	Only one author has documented travel medicine expertise; reliable sources are cited – Travel and Tropical Medicine Manual; Centers for Disease Control and Prevention; and Infectious Diseases Society of America	V	В
15	LaRocque	Research: non- experimental – comparing	Convenience sample of 1254 travelers	Travelers to still- developing nations have preventable	Sample restricted to single US airport; small	III	В

Article #	Author, Publication Source, & Date of Publication	Evidence Type and Purpose	Sample Type, Size, Setting	Study Findings	Limitations	Evidence Level	Quality Rating
	Journal of Travel Medicine 2010 (sentinel study)	travelers of low/low-middle income companies and upper- middle/high income countries	to outside countries at Boston-Logan International Airport from February – August 2019	health risks; 54% of survey respondents to LLMI countries pursued any health information prior to travel; less than 33% of those who did pursue health information visited a travel medicine specialist	sample size; few travelers surveyed who were planning to travel to Asia and Africa (higher risk destinations) (threats to external validity of selection and setting); survey response rate not noted (threat to external validity of selection		
16	Angelo Journal of Travel Medicine 2018	Research: Non- experimental – descriptive of students' characteristics	Convenience sample of 432 students (ages 17-24) who traveled inter- nationally for school and were given a confirmed travel-related diagnosis at a GeoSentinel travel clinic for illness after returning home to the U.S.	Increasing number of students traveling to resource-limited countries; only 70% of ill students did receive a health consult prior to travel; all U.S. students traveling internationally should receive a pre-travel consult with education, and vaccines/chemoproph ylaxis when indicated	GeoSentinel data only captures information from patients seen at the specialty travel clinics – not primary, acute, or emergency care settings (threats to external validity of selection and setting); over half of the student records were from only two clinics (threat to external validity of setting)	III	В

Article #	Author, Publication Source, & Date of Publication	Evidence Type and Purpose	Sample Type, Size, Setting	Study Findings	Limitations	Evidence Level	Quality Rating
17	Zappas	Non-research: Community	n/a	It is important to protect the health of	Reliable source cited – Centers for	V	В
	The Journal for Nurse	Standard for		travelers as well as	Disease Control		
	Practitioners	nurse		the communities to	and Prevention;		
		practitioners		which they return; the			
	2019	advising		pre-travel consult			
		traveling		should be with a			
		patients		provider who is well-			
				versed in travel			
				medicine			

* From: Dang, D., & Dearholt, S. L. (2018). Johns Hopkins evidence-based practice: Model and guidelines (3rd ed.). Indianapolis, IN: Sigma Theta Tau.

Appendix F

Milio's Framework of Prevention

Figure 1. Six propositions affecting health decisions

(Milio, 1776)

Appendix G

Ottawa Model of Research Use (OMRU)

Reprinted from Center on Knowledge Translation for Disability and Rehabilitation Research. Retrieved from http://ktdrr.org/ktlibrary/articles_pubs/ncddrwork/focus/focus/8/figure2.html

Appendix H

Original Data Set Ethnicities

Chart 1. Ethnicities

Appendix I

Screening Tool (EMR build)

~ (喧	THER Do you have Upcoming travel planned outside of the United States
	Restore Close X Cancel
F YES, ~ O	THER
F	Do you have Ves No upcoming travel planned outside of the United States
li h a d g r T C	ernational travel Ves No s unique health ks; however, there preventive care ailable to help crease your risk of titing sick. Can we er you to our avel Medicine nic for Care?
	Pestare Clase Y Cancel

(Triggers a Best Practice Advisory for Providers in Family Medicine and Internal Medicine)

! Referral to Travel Medicine Clinic due to planned upcoming international travel								
	Order	Do Not Order	Ambulatory referral to Travel Clinic					
Ack	nowledge Reason Patient declines	Other com	ment					

Appendix J

Process Flow Chart

Appendix K

Provider/Office Manager Education

Background: The popularity of international travel is evident as approximately 1.2 billion individuals traveled outside their own country in 2015 with anticipated estimates increasing to 2 billion international travelers by 2030 (Freedman, Chen, & Kozarsky, 2016 and Walker, LaRocque, & Sotir, 2017). Additionally, the number of individuals who travel to emerging markets, often with inherent and unfamiliar health risks, is growing. This number includes the large wave of immigrants to the U.S. - foreign-born persons who return to their countries of birth to visit friends and relatives (VFRs) (Walker, LaRocque, & Sotir, 2017). All travelers can expose themselves to unfamiliar diseases and risks outside of their own country, for which they have received no preventive care or education, suffering morbidity and mortality as a result (Angelo, Kozarsky, Ryan, Chen, & Sotir, 2017; Chen et al., 2018; Hagmann et al., 2014; Laroque et al., 2010 and Omodior, Pennington-Gray, Holland, Thapa, & Kiousis, 2017). Additionally, these travelers can carry nonendemic diseases across borders, exposing others to secondary disease and increasing risks to public health (Walker, LaRocque, & Sotir, 2017). **Problem**: Though 43-79% of international travelers reported illness during travel or after returning home, up to 54% of international travelers never received a pre-travel health consult to receive preventive care and education (Angelo et al., 2017a; Angelo et al., 2017b; Chen et al., 2018; Hagmann et al., 2014; Laroque et al., 2010; and Omodior et al., 2017). Recommendations by Angelo et al. (2017b) and Tan et al. (2017) are to proactively screen for international travel during routine patient contacts. However, due to complex epidemiology and the dynamic nature of travel medicine, unless a primary care provider (whose offices generally do not carry many of the preventive immunizations recommended for certain travel destinations) can complete a

comprehensive risk assessment and fully understands the traveler-specific, itinerary-specific, and destination-specific risks, the patient should be referred to a travel medicine specialist (Aw et al., 2014 and Fischer, 2017).

Process: The screening initiative will utilize an EPIC embedded tool and will be obligatory as it will be built into the electronic requirements of the rooming process at each primary care appointment. The medical assistant will ask the screening questions and record the answers in the electronic record. A "positive" screen will post an additional question about referral to the UPMC Pinnacle Travel Medicine Clinic. If a patient agrees, a Best Practice Advisory will generate for providers who can sign any appropriate referrals to the Travel Medicine Clinic.

References

- Angelo, K. M., Kozarsky, P. E., Ryan, E. T., Chen, L. H., & Sotir, M. J. (2017a). What proportion of international travellers acquire a travel-related illness? A review of the literature. *Journal of Travel Medicine*, 24(5), 1-8. https://doi.org/10.1093/jtm/tax046
- Angelo, K. M., Libman, M., Caumes, E., Hamer, D. H., Kain, K. C., Leder, K., ... Esposito, D.
 H. (2017b). Malaria after international travel: A GeoSentinel analysis, 2003-2016. *Malaria Journal*, 16(293). https://doi.org/10.1186/s12936-017-1936-3
- Aw, B., Boraston, S., Botten, D., Cherniwshan, D., Fazal, H., Kelton, T., ... Stowe, B. (2014). Travel medicine. *Canadian Family Physician*, 60, 1091-1099. Retrieved from http://www.cfp.ca/
- Chen, L. H., Leder, K., Barbre, K. A., Schlagenhauf, P., Libman, M., Keystone, J., ... Wilson, M.
 E. (2018). Business travel-associated illness: A GeoSentinel analysis. *Journal of Travel Medicine*, 25(1). https://doi.org/10.1093/jtm/tax097

- Fischer, P. R. (2017, June 20). Bug bytes from Barcelona: Report of the 15th conference of the International Society of Travel Medicine [Press release]. Retrieved from Relias Media Website: https://www.ahcmedia.com/articles/
- Freedman, D. O., Chen, L. H., & Kozarsky, P. E. (2016). Medical considerations before international travel. *The New England Journal of Medicine*, 375(3), 247-260. Retrieved from https://www.nejm.org
- Hagmann, S. H., Han, P. V., Stauffer, W. M., Miller, A. O., Connor, B. A., Hale, D. C., ...
 Kozarsky, P. E. (2014). Travel-associated disease among US residents visiting US
 GeoSentinel clinics after return from international travel. *Family Practice*, *31*(6), 678-687. https://doi.org/10.1093/fampra/cmu063
- Laroque, R. C., Rao, S. R., Tsibris, A., Lawton, T., Barry, A., Marano, N., ... Ryan, E. T. (2010). Pre-travel health advice-seeking behavior among US international travelers departing from Boston Logan International Airport. *Journal of Travel Medicine*, *17*(6), 387-391. https://doi.org/10.1111/j.1708-8305.2010.00457.x
- Omodior, O., Pennington-Gray, L., Holland, S., Thapa, B., & Kiousis, S. (2017). Chikungunya disease awareness among U.S. travelers to Caribbean destinations. *International Journal* of Travel Medicine and Global Health, 5(1), 20-27. https://doi.org/10.15171/ijtmgh.2017.04

Tan, E. M., Njeru, J. W., Jacobson, D. J., Wilson, P. M., Fan, C., Marcelin, J. R., ... Sia, I. G.
 (2017). Pre-travel health care utilization among travelers who visit friends and relatives.
 International Journal of Travel Medicine and Global Health, 5(2), 53-59.
 https://doi.org/10.1517/ijtmgh.2017.11

Walker, A. T., LaRocque, R. C., & Sotir, M. J. (2017). *Travel epidemiology*. Retrieved from https://wwwnc.cdc.gov/travel/yellowbook/2018/introduction/travel-epidemiology

Appendix L

Patient Education

Patient education taken from Centers for Disease Control and Prevention (CDC) travel information – condensed and printed for patient distribution. *Note.* From *Centers for Disease Control and Prevention*, 2020, https://www.cdc.gov/travel

Appendix M

DNP Project Budget

Salaries/Wages (human resource costs)	Monthly	Total
	(\$)	(\$)
Administrative Support	\$0	\$0
IT Systems Analyst	\$0	\$0
Practitioners	\$0	\$0
Medical Assistants	\$0	\$0
Travel Clinic Staff	\$0	\$0
Project Manager	\$0	\$0
	(donated)	
Total Salary Costs (already incorporated - UPMC	\$0	\$0
Pinnacle)		

Startup Costs	Total
	(\$)
Copies of research proposal	\$10
Copies of educational handouts	\$145
Costs donated by Project Manager	-\$145
Total Startup Costs	\$0

Capital (Costs		Total
		(\$)	
Hardware			\$ 0
 Equipment 	ıt		\$0
Office Su	pplies		\$0
Total Cap	ital Costs (already incorporated - UPMC Pinnacle)		\$0

Operational Costs	Total
	(\$)
Electricity (already incorporated - UPMC Pinnacle)	\$0
Heat/AC (already incorporated - UPMC Pinnacle)	\$0
Total Project Expenses	\$0

Appendix N

Stages/GANNT Chart

	Tasks	2019						2020										
		Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug
n	Proposal approval																	
ventio	IRB submission and approval																	
e-inter	Educate implementation team																	
Pre	Embed screening tool in EPIC system																	
	Enable screening tool in EPIC																	
ntion	Educate patients on purpose of screening																	
Interve	Communicate with team leads, TMC manager, providers (stakeholders)																	
	Update nursing research council on progress																	
Post-intervention	Gather retrospective and intervention data																	
	Analyze data																	
	Write final DNP project																	
	Submit final project and present to stakeholders																	

Appendix O

Data Analysis

	Table 1:	Comparison	n of Demogr	aphics Pre	and Post	Intervention	Groups
--	----------	------------	-------------	------------	----------	--------------	--------

Demographics	Group					
	Pre-intervention	Post-intervention				
Age in yrs (SD)	52.3 (15.9)	50.81 (17.8)				
Gender: female % (n)	50% (n = 50)	50% (n = 50)				
Race: White % (n)	70% (n = 70)	70% (n = 70)				
Appointment type: non-acute % (n)	100% (n = 100)	99% (n = 99)				

Table 2. Travel Referral Order * Travel Plans Crosstabulation (without missing data)

				Travel Plans	
			No	Yes	Total
Travel	No	Count	3	0	3
Referral		% within	100.0%	0.0%	100.0%
Order		travel referral			
		order			
		% within	37.5%	0.0%	3.6%
		travel plans			
	Yes	Count	5	75	80
		% within	6.3%	93.8%	100.0%
		travel referral			
		order			
		% within	62.5%	100.0%	96.4%
		travel plans			
To	tal	Count	8	75	83
		% within	9.6%	90.4%	100.0%
		travel plans			
		% within	100.0%	100.0%	100.0%
		travel referral			
		order			

Table 3. Chi-Square Test

	Value	df	Asymptotic	Exact Sig.	Exact Sig.
			Significance	(2-sided)	(1-sided)
			(2-sided)		
Pearson Chi-Square	<mark>29.180</mark>	1	.000		
Continuity Correction	19.408	1	.000		
Likelihood Ratio	15.227	1	.000		
Fisher's Exact Test				<mark>.001</mark>	.001
Linear-by-Linear Association	28.828	1	.000		
N of Valid Cases	83				

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .29.

b. Computed only for a 2x2 table

IMPROVING PREVENTIVE CARE

Table 4. Symmetric Measures

		Value	Asymptotic	Approximate	Approximate
			Standard	T ^b	Significance
			Error		
Interval by Interval	Pearson's R	.593	.141	6.627	
Ordinal by Ordinal	Spearman	.593	.141	6.627	
	Correlation				
N of Valid Cases		83			

